来自 教育 2018-01-28 19:11 的文章

冲刺高考数学,热门能力题型重点讲解:如何解

我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;

比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;

请解决以下问题:

如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;

(1)写出筝形的两个性质(定义除外);

(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.

解:(1)性质1:只有一组对角相等,

性质2:只有一条对角线平分对角;

(2)判定方法1:只有一条对角线平分对角的四边形是筝形,判定方法2:两条对角线互相垂直且只有一条被平分的四边形是筝形,

证明方法1:∵∠BAC=∠DAC,∠BCA=∠DCA,AC=AC,

∴△ABC≌△ADC,

∴AB=AD,CB=CD,①

易知AC⊥BD,

又∵∠ABD≠∠CBD,

∴∠BAC≠∠CBA,AB≠BC,②

由①②知四边形ABCD是筝形.

考点分析:

全等三角形的判定与性质;多边形

题干分析:

(1)根据题意及图示即可得出筝形的性质;

(2)根据筝形的性质即可写出判断方法,然后根据题意及图示即可进行证明.

解题反思:

本题主要考查了根据题意及图示判断筝形的定义及性质,然后根据题目要求依次进行解答,难度适中.返回搜狐,查看更多